
(NASA-CR-197605) SIMULATION OF

WAVE PROPAGATION IN

THREE-DIMENSIONAL RANDOM MEDIA

(Ca]ifornia univ.) 31 p

N95-19547

Unclas

G3/32 0038411



NASA-CR-197605

Dec. 16, 1993

Simulation of wave propagation in three-dimensional random

media

Wm. A. Coles and J. P. Filice"

Electrical and Computer Engineering

University of California, San Diego, CA 92093-0_07

/j /: "-)

/ 5_

R. G. Frehlich, and M. Yadlowsky t

Cooperative Institute for Research in the Environmental Sciences (CIRES)

University of Colorado, Boulder, CO 80309

Abstract

Quantitative error analysis for simulation of wave propagation in three dimensional

random media assuming narrow angular scattering are presented for the plane wave

and spherical wave geometry. This includes the errors resulting from finite grid size,

finite simulation dimensions, and the separation of the two-dimensional screens along

the propagation direction. Simple error scalings are determined for power-law spectra

of the random refractive index of the media. The effects of a finite inner scale are also

considered. The spatial spectra of the intensity errors are calculated and compared to

the spatial spectra of intensity. The numerical requirements for a simulation of given

accuracy are determined for realizations of the field. The numerical requirements for

accurate estimation of higher moments of the field are less stringent.

1. Introduction

To analyze the propagation of waves in random media one normally writes equations for

the propagation of the statistics of the field (such as the moments). In the case of small-

angle forward-scattering the differential equations for the propagation of the higher field

moments are difficult to solve. Consequently one must make various approximations, such as

the Born and Rytov weak-scattering approximations or the Gaussian-field strong-scattering

approximation. In fact moments higher than the fourth are so difficult that no solutions are

known outside of the asymptotic weak and strong approximations. Frequently, then, it is

necessary to solve the equations by numerical methods.
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In a numerical simulation, by contrast, one generates a realization of the random medium

(which has the desired statistics) and calculates the resulting wave field. It is actually a

numerical experiment rather than a numerical analysis. The desired statistic of the wave

field can then be estimated by repeating the experiment until the estimation errors are

satisfactory. The simulation lies conceptually between an experiment and an analysis and

it offers some unique benefits.

A single set of simulations will provide all the statistics of the field that are of interest,

whereas for theoretical and numerical analysis, each statistic must be considered separately.

This is particularly useful for higher moments or more complex field statistics. It is ,,asy to

change the statistics of the medium and repeat a set of simulations, whereas the calculation

might require a completely different set of approximations. Furthermore a simulation is an

excellent check for the sort of errors than can easily occur in a complex analysis.

A simulation cannot, of course, replace an experiment; but it can help identify the im-

portant factors in the experiment. For example if the medium is turbulent it is very difficult

to generate or even to identify periods of uniform homogeneous turbulence. Generally real

turbulent processes are non-stationary and inhomogeneous in a way which is described as in-

termittent. It is often very difficult to measure the appropriate statistics of the medium and

usually impossible to thoroughly sample the region of interest. Thus when an experiment

disagrees with a theoretical calculation it is difficult to tell if the calculation is at fault or

if the statistical model of the medium is inadequate. Simulations have been used to resolve

disagreements between theoretical predictions and experiments 1. Simulations have recently

been used to investigate the effects of intermittency on laser propagation by Frehlich 2. These

issues are important for predictions of the effects of refractive turbulence on coherent lidar 3'4.

Another case of interest occurs when it is impossible to observe the process long enough

to obtain an ensemble average. This is quite often the case in astronomical observations of

scattering in the interstellar medium. Here one might wish to know if some feature of the

observation is due to a peculiarity of the medium (i.e. something deterministic) or if it is

simply a chance sample from a homogeneous stochastic process. Indeed one may find it very

difficult to describe the feature in question in terms of moments of the random field. In a

simulation one can compare the wave field with the realization of the random medium in a

point by point manner. This approach was used by Coles and Filice s to demonstrate the

effect of refraction by large scale structures on the dynamic spectra of intensity scintillation

in the solar wind.

Simulations of wave propagation through a thin phase-screen with only one transverse

dimension have been widely used in the study of ionospheric propagation, where the statistics

are believed to be highly anisotropic 8-11. Simulations of radio propagation through the

solar-wind use the phase-screen approximation with two transverse dimensions sa_ However

in nearly isotropic media, such as the atmosphere, a three-dimensional simulation (two

transverse dimensions and one propagation dimension) is clearly necessary. These are more

demanding of computational resources (both memory and processor) and much more care

must be given to the effect of the computational mesh on the accuracy of the result. These

issues appear to have been first investigated by Filicel_; they have also been discussed

qualitatively by Martin and Flatte 13'14. A review of simulation of wave propagation in

random media is presented by Martin 1S. For extended random media, Spivack and Uscinski Is

presented the leading order error scaling for the field and second moment as a function of the
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separationbetweenthe screensAz for simulations in a random medium with one transverse

dimensions (two-dimensional simulation).

The purpose of this paper is to present quantitative results for the optimal choice of the

mesh size for simulation of wave propagation through a three-dimensional random medium.

The propagation problem we consider is small-angle forward-scattering by a phase chang-

ing medium. The refractive index of the medium is a three-dimensional Gaussian random

process n(F) which is completely described by its structure function D,,(F) or its spatial

power spectrum _,,(fi). The notation of Prokhorov et al lz will be used throughout. We

have investigated power-law processes with structure functions of the form D,,(F) = C_r _-1.

For such processes the spatial power spectrum is

¢_(q) = A(a)C_q -°-_ where A(ct) = F(a + 1)sin[(a- 2 . (1)

Much of the application of this work is to turbulent media with high Reynolds number in

which an inner-scale is important. To investigate the effect of the inner-scale lo on simulation

error we used the universal spectrum for the Kolmogorov exponent a = 5/3

¢,_(q) = O.0330054C_q-la/af(qlo) where f(x) = (1 + aax + a2x 2 + aaxa)exp(-x). (2)

We used al =1.4284, as =1.1987, a3 =0.1414, as estimated from laser scintillation data by

Frehlich TM. We have studied three geometries: a plane wave normally incident on a thin slab

of random medium; a plane wave normally incident on a half-space of uniform homogeneous

random medium; and a point source embedded in a uniform homogeneous medium. The

thin slab or screen problem is a canonical case because the extended medium can be treated

as a stack of slabs.

2. Forward Scattering Theory

The choice of computational mesh depends on the important spatial scales in the random

field in the observation plane. Here we will review the forward scattering theory necessary to

estimate these scales. If the scattering angle is small it is convenient to write the field with

respect to a monochromatic plane wave as F(_', z, t)= f(g, z)exp[i(kz- _t)]. Here _" is the

transverse coordinate and k = 2_r/)_. The intensity is defined as I(_, z) = < f(_', z)f'(ff, z) >.

It is also useful to normalize the field so that the average intensity < I(ff, z) > is unity. This

leads to the parabolic wave equation

Of i 2 - z) + ikn(ff, z)f(ff, z) (3)
_zz(S',Z) = _-_Vtf(s,

where Vt is the transverse gradient operator and n(f) is the deviation of the refractive index
from its mean value.

Propagation equations for the moments of the field can be derived under the Markov

approximation 19a°. This is equivalent to the assumption that the continuous random

medium can be decomposed into a series of statistically independent thin slabs. These

slabs must be sufficiently thin that each acting alone would cause only small phase fluctu-

ations. The conditions for the validity of this approximation have been determined for the

first moment or average field, the second moment or mutual coherence function, and the



•fburth moment 2°. The conditions for the validity of the second and fourth moment are very

weak and for isotropic turbulence essentially equivalent to the small-angle approximation of

the parabolic equation. We will also make this approximation in the numerical simulation;

although it is not essential it greatly simplifies the calculations.

The propagation of the second field moment or mutual coherence function F2(_l, x2) =

< f(Kx)f*(ff,) > admits an analytical solution for the cases of interest here. If the field is

wide sense stationary (i.e. F2 is only a function of ffl2 = xl -:_2) then the Fourier transform of

F2 is the spatial power spectrum of the field. The bandwidth of this power spectrum sets the

required sampling interval. The propagation equation for F2(£1, x2) is given by Prokhorov

et al, lz in terms of D'(g, z), the longitudinal gradient of the wave structure function

0r2 i 2 v_)r2 1 ,_.
Oz (K,,K2, z) = -_(V 1 - - -_D (s,_,z)r,(_,,_,z) (4)

/FD'(_,z) = 47rk 2 d2q[1 - cos(_ • _')]_,_((_,q, = 0, z).
oo

(5)

In the planar geometry the term (V_ - VI)F2 is identically zero and the solution at range

R can be written

= exp[-½DP(g,R)] (8)

where

Dp(g,R) = foRdZD'(ff, z). (7)

A similar solution applies for a spherical wave if Dp(_, R) is replaced by

Ds(g,R) = JoRdZD'(gz/R,z). (8)

The wave structure functions Dp(s--') and Ds(ff) can also be written as D(ff) =< [¢(F)-

¢(_ + _)]2 > where ¢(F) is the phase on a geometrical path from the source to the receiver.

So D(ff) is a measure of the differential phase variance on a baseline ft. The field coherence

scale So can be defined by D(so) = 1. This scale so is inversely related to the rms scattering

angle because the Fourier transform of F2(_ is the spatial spectrum F_(_). A component

of the spatial spectrum at frequency _ corresponds to a plane wave propagating at an angle

of 0 = sin -1(q/k) to the z axis. Thus the width of the angular spectrum can be defined as

Oo-- 1/(kso).

The propagation equation for the fourth moment of the field ['4 = < f(K1) f*(K2) f(_3)

f'(K4) > is

dF4 i 2
dz - 2-k(v,- + vr,
2V = D'(g,2) + D'(_',4) + D'(g23) + D'(_34) - D'(g,3) - D'(g24). (9)

The case of greatest interest is when _'_2 = ffz4 = 0. Then F, = < I(_I(F+ ff_3) > =

1 + C_(g13) where Ct(ff_3) is the covariance of the intensity fluctuations. This can be solved
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in weak scattering using the Born approximation and in strong scattering using various

series expansions (none of which converge quickly). Solutions for pure power-law and for

Gaussian spectra of refractive index have been summarized by Prokhorov et al.17. Solutions

for power-law spectra with inner scales have been given by Fante _1 for the case of a plane

wave incident on a homogeneous half space and by Frehlich 22 for the case of a point source

embedded in a homogeneous medium. The most important characteristics of the intensity

covariance are outlined below for power-law and related spectra.

For weak scattering the intensity variance rn 2 = CI(O) is less than unity and the shape

of Ct(g) is independent of the level of the refractive index spectrum, but the variance m s is

linearly proportional to this level. In weak scattering the spatial scale of Ct(ff) is the radius

of the first Fresnel zone rl = (R/k) °'s when the inner scale is less than the Fresnel scale,

otherwise it is proportional to the inner scale. The Born variance is m_ = KD(rs) where K

is a constant of the order of unity which depends weakly on the shape of the spectrum and

the incident wave (e.g. equations 26 and 38). The Born variance m_ is a useful measure of

the strength of scattering even when rn_ >> 1, that is when rn_ is not a good approximation
to m 2.

In strong scattering as m_ ---* c¢, the field approaches a (complex) Gaussian process, the

mean field approaches zero, and the intensity covariance approaches C_(s-') = exp[-D(ff)],

i.e. the intensity has unit variance and spatial scale (at I/e) of so. The first correction to

this strong scattering limit adds two terms to C_(s-'); Cr(_') and Calf(s-'). It is conceptually

helpful to model the intensity as a diffractive process of scale so modulated by a refractive

process of larger scale s_ 23. If D(_) is isotropic the scale of the refractive process is the

distance subtended by the scattering angle, that is s, = OoR. The product term is Cd_(_ =

exp[-D(g)]C_(g). Thus Cr and Cd_ carry equal variance, but, as C_ is of much larger

scale, the scale of Cd_ is approximately so. If D(_') is anisotropic the refractive process is

also anisotropic with the same axial ratio, but not, as one might expect, of the form 0_R.

Rather, the minor axis of s_ is equ_! to the major axis of 0_R _4.

Three important scales emerge from the analysis of the second and fourth moments. The

first is the field coherence length So. The second is the scattering disc OoR. The third is

the radius of the first Fresnel zone r I. The three scales are not independent as r) = SoS_.

Fortunately these scales can be determined from the geometry and the analytical solution

for the second moment.

3. The Propagation Calculation

The propagation of a wave through a random medium according to the parabolic wave equa-

tion is the limiting case of propagation through a series of discrete phase screens separated

by free space. A finite number of screens Ns can be used if the phase fluctuations in each

screen are small. However the simulation of this problem is greatly assisted if these screens

are statistically independent. This decomposition into independent weak phase screens is

equivalent to the Markov approximation which is usually made when such problems are

solved analytically. The effects of correlated screens on simulations with one transverse di-

mension was shown to be small _s when the separation between screens was larger than the

correlation distance of the refractive index fluctuations. Clearly it is possible to simulate a

medium in which the Markov approximation breaks down and this would be an interesting
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project. Howeverin the work reported herewehave usedindependentscreens.
The passageof a wave f(_', z) through a thin screen with phase fluctuations ¢(s-') at z=0

can be expressed as f(ff, 0 +) = f(g, 0-) exp[i¢(s-')]. The propagation between the screens in

free-space is expressed as a convolution using the Fresnel integral. For numerical work it

is efficient to do the convolution in the Fourier transform domain using the Fast Fourier

Transform (FFT) algorithm (i.e. f'(_t,z) = ft(_hO)exp[-izq2/(2k)] where ff(_t,z) is the

Fourier transform of f(_', z)).

The simulation begins by generating a series of independent phase screens ¢,_(_ for

n = 1,..., Ns separated by Az. The field incident on the first screen is deterministic. The

field incident on a screen f(_, nAz-) is propagated to the next by: multiplying the incident

wave by the phase transmittance ezp[i¢,,(_)]; Fourier transforming the field; multiplying

the transform by the free space propagator exp(-iq2Az/2k); and finally retransforming to

obtain the field incident on the next screen. That is

f[_,(n + l)Az-] = Ft-l{Ft[f(_,nAz-)exp(iCn(_))lexp[-iq2Az/(2k)]}. (10)

The field is a bandlimited random process and we can use sampling theory to choose

the appropriate grid spacing. In general a field of propagating waves is strictly bandlimited

because q < k. Thus the original field can be reconstructed from samples taken at intervals

of As < 2rr/(2k) = X/2 without any loss of information. In this case we are considering

only small angle forward scattering so the field is actually bandlimited much more severely.

In fact the spatial spectra of interest typically have a form similar to exp(-q2/qo2). Thus

there is no significant power for q > qma_, where q,,,a, _ 3qo. Then a sample interval of

As _ r/qm_ _ So will be adequate.

The grid must be of finite extent and the characteristics of the Discrete Fourier Transform

(DFT) imposes periodicity of the fields. In choosing this period we are guided by the

characteristics of the angular spectrum and the intuitive interpretation of the rigorous path-

integral solution for the fields. In weak scattering (when the Born approximation holds)

the field in the observation plane is determined primarily by the scattering medium inside

the first Fresnel zone of rays 2s because these contributions arrive in-phase. The maximum

extent of the first Fresnel zone is given by r/. In strong scattering the components of the

scattered field are more randomly phased. In this case, the important region of scattering

is not the first Fresnel zone but the radius of the scattering disc OoR which is defined by

the angular spectrum. The scattering disc is larger than the first Fresnel zone if r I > so.

This implies D(rl) > 1 which is consistent with other definitions of strong scattering based

on the intensity variance. As it happens the largest scale of the random field (st) is the

radius of the scattering disc so the screen size is also appropriate for the receiving plane. If

spatial statistics are desired, as is normally the case, then the screen must be large enough

that each point of interest is at least OoR away from the edge of the screen. A similar

argument based on the spatial intensity spectrum has been used to estimate the required

screen dimensions 13-1s. We use a square screen of dimensions _ 40oR. A rectangular screen

was also used for comparison.
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4. Generation of a Random Screen

The thin slab of random medium in -Az/2 < z < +Az/2 is described by the spatial spectrum

of refractive index fluctuations _,,(_, z). The two-dimensional phase fluctuations ¢(ff, z) are

given by

/+Az/2
¢(ff, z) = ka_a:/_ dz n(g,z). (11)

The two-dimensional spatial spectrum of phase fluctuations under the Markov appIoxima-
tion is

Ot(q_,%,z) = 2.xk2AzO,(q_, %, q, = 0, z). (12)

The random phase screen is represented as a set of real numbers {¢m,_ } which are samples

of a continuous random process ¢(g) over a finite range. The process ¢(g) is a member of

an ensemble with power spectral density _(_). The sample interval is Ax, Ay and the

simulation dimension is L,, Lu. The {¢mn} are generated in the frequency domain from

a set of complex random numbers ¢_q = Apq + iBpq. Here Apq and Bpq are independent
zero-mean Gaussian random variables both with variance

= < I¢',,I > =
4_r2 M N

AxAy _¢(2_rp/L_,2_rq/L_). (13)

The Gaussian random numbers A_,q and Bpq are generated from a pair of uniformly dis-

tributed random numbers using the Box-Muller transformation. Realizations of the phase

{¢,,,,} are obtained from the DFT of {¢_q}. The real and imaginary parts of ¢,_, are un-

correlated and represent realizations of the desired random process, i.e., the expectation of

the respective sample spectra are _b(_). The continuous sample spectrum is

1 L.

C¢(_t)- L_L I fo fo L" ¢(g)exp(-i_t'ff)aOs]2

(/k. zAy)2 M N

- L_L_ [_-_ _ ok,,,,, exp[--i(q:_mAx + %nAy)]] 2.
0 0

The discrete sample spectrum is then

C_(2_rp/ L:_, 2_rq/ Lu) =
[¢;,1'

m

L_L_ 4_r2 MN 4_r2

and substitution of Eq. (13) in (15) demonstrates that < C_(q) > = 0_((_) as required.

(14)

(15)

5. Plane Wave Incident on a Thin Phase Screen

We tested the canonical problem of the plane wave incident on a thin phase screen using

the universal power-law spectrum given in Eq. (2) for the phase spectrum, i.e.,

_(_t) - Tq-_-2 f(qlo) (16)



where T = 2zrk2A(a)C_Az. _or a pure power-law spectrum (I0 = 0) and for 0 < a < 2,

the strength of scattering m_, the coherence scale so and the structure function Dzs(S') are

given by

m_ = 4_'TF(1 - al2)cos(a_14)r_la = KI(Cl)DTs(rs) (17)

K,(a) = 2_F(1 + a/2)cos(a_r/4) (18)

DTS(ff)= (s/so) = 4zrT F(1-a/2) (s/2)" (19)
ar(1 + a/2)

We have argued that the sample interval (Ax, Ay) should be of the order of the coher-

ence scale so and that the screen size should be of the order of the scattering disc OoR.

The coherence scale decreases with increasing strength of scattering and the scattering disc

increases. Thus the memory and computation time required increase very rapidly with in-

creasing strength of scattering. It is important to establish the strongest scattering that can

be simulated with a specified error.

A reference calculation of was performed using a 2048x2048 point array with Ax =

Ay = r1/64 and L_ = L,: = 64r I. The effect of the finite sample interval or sampling error

was estimated by resampling the reference screen at Ax = Ay = rl/32 , rl/16, rl/8 and

r//4, recalculating the field for each resampled screen, and comparing the results of each

resampled calculation with the reference calculation. For all cases studied the rms error of

the real part of the field was equal to the rms error of the imaginary part of the field and

both were half the rms error of the intensity Ir,_,. These tests were done for two exponents

(a = 1 and 5/3) and three strengths of scattering (m_ = 0.1, 1 and 10).

The error for a pure power-law spectrum should depend only on As/so because the

shape of the spectrum does not depend on the strength of scattering. We tested this by

plotting Ir,_s versus As�so in Fig. 1. The error was well described by power-law model,

[L,,,s = 0.671(As�so) °'514 for a = 1 and I_,_, = 0.382(As�so) °'szs for a = 5/3]. Since the

error is caused by aliasing it should be a steeper function of As�so for steeper spectra. Indeed

we find (approximately) that It,,,, o¢ (As/so) _/_. We also find that there is essentially no

change in the rms intensity md,c as As increases, even when the intensity error I,,,,o is equal

to rodeo. If we write the intensity of the resampled screen as /dec = I + AI then

2
rn_dec = Var([ + AI) = m s + I,,_. + Cov(I, AI) (20)

where Cov(I, AI) = < (I - 1)AI > is the covariance of I and AI. Clearly then the

sampling error AI is anti-correlated with the intensity I, i.e. as As increases Id, c tends to

underestimate the intensity peaks and overestimate the intensity nulls. This is exactly the

behavior one expects of a low-pass filter.

We also simulated three cases with an exponent of a = 5/3 and an inner scale of 1o = 5As.

These examples were normalized to the pure power-law case with a = 5/3 by setting the

spectral levels the same at low wavenumber. For this test the spectrum changes with the

sample interval so L,,,, should not be expected to scale as As/so. The results are displayed

in the bottom panel of Fig. 1. As one would expect, when As > lo the result is the same as
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for the pure power-lawcase.When As < 1o the error is much less than the pure power-law

case because the spectrum drops faster at high frequencies and the effects of aliasing are

greatly reduced. As for the pure power-law spectra, there is essentially no change in the rms

intensity marc, even for It,,,, equal to ma,c.

The spatial spectrum of intensity fluctuations _t(q) for rn_ = 10 and a pure power-law

phase spectrum (a = 5/3) is shown in Fig. 2. The spectra of the intensity error AI for

As = rl/32 and r//16 are overplotted as open symbols. It is interesting to see that the

sampling errors are almost white, i.e. the errors are independent. These errors are caused

by aliasing in the angular spectrum, so they are introduced near the Nyquist frequency,

however after the propagation calculation they have spread almost uniformly throughout

the intensity spectrum.

The errors introduced by the finite dimensions of the simulation or windowing errors

are more difficult to investigate. The random screen generated using the DFT is periodic.

Originally we created a large reference screen and calculated a reference field. Then we re-

duced the window by truncating the reference screen. However the errors calculated this way

increased much more rapidly than we expected (i.e. I_,_, o¢ Ly/sr). The problem is clearly

that the truncation process removes the periodicity in the screen and the discontinuities at

the edges of the simulation produce addition errors that increase as the observation point

approaches the edge of the simulation. This additional error would not exist if the screen

had been generated at the smaller size.

The windowing error is more easily examined in the transform domain. The propaga-

tion algorithm conserves power so, with our field normalization, the mean intensity in any

observing plane is exactly unity. The intensity spectrum is estimated by the DFT so its

dc component is also exactly unity. However the dc component of the DFT should have

included the integral over the resolution cell centered on the origin. Thus we have made an

error in the spectrum which causes an error in the variance, which can be approximated as

f2S,/L, f2S,/L, dqy(bt(q,, %)
Am2 = a-251r/Lx dq_: a-26_/Ly

(21)

where 5 is the fraction of the zero-frequency bin that is incorporated into the DC component.

This error is easily estimated because the integration is confined to very low frequencies

(q < 2r/L) and a low frequency approximation to the intensity spectrum is known 1r'_6.

(hi(q) = 4(_(q)sin_[q2R/(2k)]exp[-DTs(qR/k)] (22)

If we choose L > zrOoR, as we have argued intuitively, then the arguments of both the

exponential and the sin 2 term are small and one can do a power series expansion. The

integral can then be done term by term. The first term, if L: = Lu, is

Am2- a(27rSr//L)4-"I(a) (23)
m_ zrcos(ra/4)I'(1 - a/2)

where

I(a) = fox dx fo' dY(x_ + y2),-,#2 (24)



and I(5/3) = 0.89627. An example of the windowing error for the pure Kolmogorov spec-

trum with m_ = 1.0 is plotted in F;_, 3. Here m s is displayed in the upper panel and

Am = [m21 - m2]l/_ is displayed in the lower panel, to permit comparison with the sam-

pling error L,,,,. The theoretical model [Eqs. (21), (22) and 6 = 0.65] is a dashed line and

the best-fit power-law function is the solid line. Clearly both fit adequately in the range of

interest.

These calculations cordirm our intuitive expectation that the sample interval should be

a fraction of the coherence scale and that the window should be larger than the scattering

disc. Since the scattering disc is inversely proportional to the coherence scale the number

of points on the x and y axes must be N cx OoR/so cx 1/32o . For a power-law spectrum of

exponent a the coherence scale so cx (m_) -1/_. Therefore the number of points needed is

Np2 cx (m_) 4/_.

6. Plane Wave Incident on a Uniform Medium

The simulation of an extended medium is performed by collapsing slabs of random media

with thickness Az into a series of Ns thin weak phase screens as discussed before. The

sample mesh for each screen must be chosen so Ay ._ 2rl/v/-g and L_ _ 2rlv/g. The

remaining question is how to choose Az the screen spacing.

For a pure power-law spectrum (10 = 0) and for 0 < a < 2, the strength of scattering

m_, the coherence scale so and the structure function Dp(s-') are given by 22

m_ = K_(a)Dp(rl) (25)

K2(a) = 2"+'r(1 + a/2) cos(a r/4)/(2 + (26)

Dp( ) = (S/So)" = ° (27)

= -a/2) sin[( - 1)r/2]/F(1 + (28)

For the Kolmogorov exponent, B_(5/3) = 2.91438 and /(2(5/3) = 0.421602. The strength

of each phase screen is given by Eq. (16) as T = 2_rk2A(a)C_Az. After the field has

propagated a distance Az, the perturbation of the field introduced by the phase screen must

be small. Because the field incident on the phase screen is random, a rigorous estimate of

the magnitude of the field perturbation is difficult. A simple estimate of the magnitude of

the field perturbation is the Born variance rn_ [Eq. (17)]. This implies that Az cx 1/m_.

The extended medium simulation was tested against a reference as before. The reference

mesh was Ax = Ay = As = r1/16, Az = R/Ns. We generated Ns = 128 independent

512×512 random phase screens and calculated the field in the receiving plane. The screen

spacing was then doubled by summing pairs of screens, the field was recalculated and the

rms intensity error was determined by comparison with the reference field. This procedure

was repeated to obtain the intensity errors for Az/R = 1/Ns = 1/64, 1/32, 1/16 and 1/8.

The rms intensity error is plotted as a function of Az/R in Fig. 4. The estimation error of

each point is less than the size of the symbol. For a fixed rn_ and pure power-law spectra,
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/_, has a power-law dependence. It is interesting that Irmo is larger for flatter spectra,

and also changes more slowly with Az, clearly the high spatial frequency components are

dominating the intensity errors. For the Kolmogorov exponent a = 5/3, the collection of

Az errors follow an approximate scaling rule 2I L, o = m_Az/4R = m_/4Ns.. Although we

have not advanced a theory for this rule its functional form is not surprising and may be

useful, particularly when high accuracy is required. When an inner scale is included, the Az

errors are still lower and, as the screen spacing approaches zero, the error I,m, is linearly

proportional to Az, in agreement with the results of Spivack and Uscinski 16. The estimated

rms intensity m does not change as Az increases, even when Ir_o > m. This is very similar

to the behavior of the transverse sampling error shown in Fig. 1 and likewise implies that

the error AI due to Az is anticorrelated with the intensity itself. This behavior is consistent

with the theoretical prediction of Spivack 2r.

The spatial spectra of intensity and intensity error for two different Az are shown in Fig.

5. Here we used a pure Kolmogorov sp_ _:trum and m_ = 1. It is interesting that the error

spectra are not white. The error spectra fall at higher wavenumbers such that they never

exceed the spectrum of intensity by more than a factor of about 2.

The transverse sampling error for the extended medium simulation was estimated the

same way as for the thin screen case using 128 screens for each simulation. The results are

shown in Fig. 6 for two pure power-law turbulence spectra and a Kolmogorov spectrum

with an inner scale l0 = 5As. For the pure power-law cases, the best fit power-law for the

thin-screen result [see Fig. 1] is overplotted showing remarkable agreement. The effect of

the inner scale is also very similar to the thin screen result. The rms intensity m does not

change with increasing As until As > 2so, as in the thin screen case, indicating that the
anticorrelation of AI and I is similar.

The spatial spectra of intensity and intensity error due to transverse sampling are shown

in Fig. 7 for a Kolmogorov spectrum with rn_ = 1. The error spectra are very similar to

the thin screen spectra shown in Fig. 2, but are not directly comparable because we used a

smaller m_ for the extended medium simulation to reduce the computational burden.

The windowing error is investigated in an analogous manner to the thin screen case. For

a pure power-law refractive index spectrum and uniform turbulence along the propagation

path we can use the low wavenumber approximation given by lr

Or(q) = 87rk20n(q)Lndzsin_[q2(R - z)/(2k)]exp{-DP[k(R- z)(1 + az/R)/(1 + a)]}.

(29)

The variance error is then

Aml = ct2<_+lF(l_--((]+-a/2)Dp(rs)l_ .,ofl"'°°R/Ldu: .,o/l"'°°nlt" du, L' dt ×

u-°'-2sin_[tu2a2o/(2rs2)]exp[-u°'t"(1 +a-at)l(1 + a)]. (30)

As with the thin screen case, for fixed Dp(rs) or rn_ the windowing error is a function of

the parameter OoR/L. In the limit of large L the exponential term and the sine term of Eq.

(30) can be expanded. The leading order result is

Am 2 c_(2 + _)(2r6rs/L)'-°t(c0
m_- 6rF(1-c_/2)cos(_r/4) (31)
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The windowing error, the best fit power-law function, and the theoretical predictions of Eqs.

(21) and (29) with (5 = 0.65 (the same value as for the thin screen case Fig. 3) are plotted

in Fig. 8 for the pure Kolmogorov spectrum with m_ = 1.0. The theoretical scaling law

agrees with the simulation. However, the statistical fluctuations of the estimates for rn 2 are

much larger than for the thin screen case because fewer realizations could be calculated in

a reasonable amount of time.

We can now estimate the total number of mesh points required in a uniform medium

calculation. If the acceptable error is fixed then the number of points in the three dimensional

mesh is Np3 = Np2R/Az = Np2Ns so Npa (x (m_) 4#'+1. This very rapid increase of :v:;-_ with

m_ sets a hard limit on the strength of scattering which can be simulated with this technique.

7. Point Source ° in a Uniform Medium

The case of a point source in an extended medium cannot be analyzed simply by replacing

the incident plane wave with a point source because of the periodicity implied by the use

of the DFT. With an incident plane wave the radiation diverges from the axis only due to

scattering. Thus one period will interfere with another by an overlap of m OoR. However

in the spherical geometry the radiation is naturally diverging so the overlap from adjacent

periods is more severe. This problem has been approximated 14'1 using a diverging Gaussian

beam as the incident field. The average intensity in the observation plane is then a function

of the radial distance from the beam propagation axis. The statistics of the intensity must

be calculated in the observation plane using a small region in the center of the simulation

and normalizing the results by the average intensity. This approach requires careful choice of

the beam width so the approximation to a spherical wave is good, but the window is not any

larger than necessary. Another approach, which we have used here, is to cast the split-step

algorithm in a spherically diverging coordinate system (r, r/z, r/y) defined by x = rr/_, y = rr/y

for r/_.y << 1.

In this coordinate system the field is written with respect to a monochromatic spherical

wave

F(_, r, t) = f,( ff, r) exp[i( kr - wt)]/r. (32)

The parabolic wave equation is then

o:. (o,:.
Or - 2kr' k Orl_ + Orl_ ] + ikn(rrl"rrl"z)f°" (33)

This can be solved in free space (n=0) by Fourier transformation with respect to rI. The

transformvariablesare q = g/r and = Then

ft,(fl, r) = ft,(fl, ro)exp[-il3_(1/ro- llr)/(2k)]. (34)

This expression is used to propagate the field from one screen to the next. The transmittance

of each screen is defined by its phase spectrum which is given by

r+Ar/2

¢,(/_,r) = 2_rk2 _a,/2 z-2(_n(_/z,q_ = O)dz. (35)
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IfAr<<r then

= = (36)

For a pure power-law spectrum (lo = 0) and for 0 < a < 2, the strength of scattering

m_, the coherence scale so and the structure function Ds(g) are given by 22

m_ = Ka(a)Ds(r/) (37)

= 2 r3(1 +  12)cos( .14)lr(a + 1) (38)

Ds(g) = (s/so) _' = B2(c_)k2C_Rs _ (39)

= 2'-or( )r(1 - a/2) sin[(a - 1)r/2l/[(a + 1)F(1 + a/2)]. (40)

For the Kolmogorov exponent B2(5/3) = 1.09289 and/(3(5/3) = 0.454560.

The point source simulation was tested against a reference using the same parameters

and procedure as the plane-wave extended medium case. The intensity errors are plotted

as a function of Az/R = 1/Ns in Fig. 9. For a fixed m_ and pure power-law spectra, the

error follows a power-law dependence with a similar exponent to that of the plane-wave

case but the error at a given Az/R is about 4 times higher. For the Kolmogorov exponent

the collection of intensity errors follows an approximate scaling rule 2 4m_Az/R

4m_/Ns. When an inner scale is included, the errors are smaller and as the screen spacing

approaches zero, Irm, is linearly proportional to Az, which agrees with the results for the

plane wave case.

The spatial spectra of the intensity and the intensity errors for two different values of

Az are shown in Fig. 10 for the Kolmogorov exponent a = 5/3 and m_ = 1. The intensity

error spectra have a higher low-frequency contribution than the plane-wave case. However

the dominant contribution to the total error variance is still from the higher wavenumber

region.

The transverse sampling errors for the point source case are shown in Fig. 11 for two pure

power-law turbulence spectra and a Kolmogorov spectrum with an inner scale 10 = 5As.

The best fit for the thin screen errors shown in Fig. 1 is overplotted. One can see that the fit

to the pure power-law cases is again remarkably good. Clearly the errors due to transverse

sampling are well described by the thin screen solution, both for plane and spherical waves.

The effect of an inner scale is also very similar to that of the thin screen but this case is

harder to scale. The estimated rms intensity md_c is essentially constant for As/so < 4.

The spectral density of the intensity sampling errors are shown in Fig. 12 for a Kolmogorov

spectrum with m_ = 1. As with the previous cases, the sampling error spectra are largest

at high spatial frequencies and display characteristics of aliasing.

The windowing error is investigated in an analogous manner to the previous two cases.

For a pure power-law refractive index spectrum and uniform turbulence along the propa-

gation path, we use the low wavenumber approximation for the intensity spectrum lr'2s and

calculate the variance error by integrating over the first resolution element.
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q)/(q) =-8z'k 2 _Rdz(_,,(qR/z)sin_[q_z(R- z)/(2k)]exp{-Ds[q(R- z)/k]} (41)

Am2 = 2_+2_(°c +_'I"(ll)F(1-oc/2)+a/2)Ds(rI)2 Jo/2_6°°RIL du_ Jo/2"6°°RIL du_ fo' dt x

t_u -_-2 sin2[(1 - 1/t)u2sl/(2 s2)]exp[-u (1 - t)_]. (42)

For fixed Ds(r/) or rn_ the windowing error is a function of the parameter OoR/L.

In the limit of large L the exponential term and the sin term of Eq. (42) can be expanded.

The leading order result is

Am 2 _ 2F(1 + a)(2r_rs/L)4-"I(a) (43)
m_ (a- 1)r(1 - a/2)r_(1 +ct/2)cos(a_r/4) "

The windowing error estimates from the simulations, the best fit power-law function,

and the theoretical predictions of Eqs. (21) and (41) with 6 = 0.75 are plotted in Fig. 8

for the pure Kolmogorov spectrum with my = 1.0. The theoretical scaling law agrees with

the simulation at small OoR/L. The higher terms of the series expansion for the intensity

spectrum are required to predict the windowing error for larger OoR/L.

8. Conclusion

The FFT split-step algorithm for wave propagation in random media is well-adapted to the

case of an incident plane wave. It can be applied to the case of an incident spherical wave

if a diverging spherical coordinate system is used. We find that the error scaling in the two

cases is essentially the same. The numerical accuracy of the algorithm can be determined

by the error scaling as a function of transverse sampling (As), longitudinal sampling (Az),

and transverse dimension or window (L). The sampling errors can be studied directly by

resampling a reference calculation, so one can determine the rms error by comparing the

resampled calculation with the reference. This allows one to find any of the statistics of

the error, for example its spectral distribution. The windowing error is more difficult, and

we have only been able to estimate its effect on the variance by integrating the intensity

spectrum over a fraction 6 of the spatial frequency bin around zero frequency. Unfortunately

we cannot create a sample of the windowing error by comparing with a reference field,

because of the periodicity of the window.

The transverse sampling error for power-law spectra as a function of _S/So is exactly

the same for the three cases tested, i.e. thin screen and uniform media with plane wave or

spherical wave incident. It is well described as an aliasing error in the angular spectrum

so steeper phase spectra have less sampling error than flatter spectra. Phase spectra which

include an inner scale are particularly steep so they can be simulated with relaxed sampling.

The spatial spectrum of the sampling error is characterized by maximum contribution at

the high wavenumbers indicating a small spatial scale and aliasing.

The longitudinal sampling error is not properly described as an aliasing error although

it is similar. It is clear the these errors are primarily due to high frequency components

because steeper power-law spectra have smaller errors as do spectra which include an inner

14



scale.The scalingwith Az is similar for plane wave and point source simulations, but the

point source errors are 4 times higher. The spatial spectrum of the longitudinal sampling

error is also concentrated at high wave-number but displays a high-frequency cutoff. The

point-source error spectrum has a larger low-frequency component than the plane-wave case.

A theoretical expression for the Az scaling of the field error has been given by Spivack
and Uscinski 16 when the random medium has finite derivatives. The Az error determined

from the simulations for the plane wave and point source agrees with this scaling when an

inner scale is included. For a pure power-law spectrum we obtained a weaker scaling law,

presuemably because the finite derivative constraint was violated. Spivack 2z also calculated

the (Az) 2 dependence for the error of higher moments. This error scaling is difficult to verify

because the estimation error of the higher moments is large 2s'29. Thus many independent

samples are required to produce accurate estimates and we were unable to confirm this

scaling for the intensity variance or any higher moments.

A similar problem occurred in attempting to verify the theoretical model for the win-

dowing errors in the intensity variance. For the thin screen simulation, shown in Fig. 3,

it was easy to calculate many realizations of the field and the windowing error was accu-

rately determined. For extended medium simulations, which are shown in Fig. 8, the errors

are considerably larger. However, the windowing error does follow the predictions of our
theoretical model.

When an inner scale is included the error scaling is not a simple power-law and the errors

are less than for the pure power-law case because the high spatial frequency fluctuations of

the medium and field are reduced. The error analysis presented here can be extended to any

spectral model for the turbulence and finite beam propagation. It would be very valuable if

the error in estimating the moments could be expressed in terms of the transverse sampling

error and the Az error since both of these errors can be accurately estimated with few
calculations.
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FIGURES

Fig. 1. Intensity error Irms due to transverse sampling As for a plane-wave incident on a

thin-screen. The phase spectrum for the calculations in the top panel is a pure power-law with

exponent a = 1 and that in the middle panel has a = 5/3. The phase spectrum used in the lower

panel is an atmospheric spectrum Eq. (2) with inner scale l0 = 5As. The turbulence level for

these spectra are described by the Born variance with zero inner scale Eq. (17). These are: m_ =

0.1 (o), 1.0 (O), and 10 (&). The best fit power-law is plotted as a straight line on the upper two

panels. The estimated rms intensity mdec for m_ = 10 is shown as a dashed line.

Fig. 2. Spatial spectra of intensity (.) and intensity error due to transverse sampling (open

symbols) for a plane-wave phase-screen simulation with (N = 2048, As = rl/64). The spectrum

was a pure Kolmogorov power-law with m_=lO. The intensity error spectra were calculated for

As = rl/32 (o) and As = rill6 (0).

Fig. 3. The intensity variance m 2 (top panel) and the windowing error/,,ha (bottom panel) for

a plane-wave phase-screen simulation as a function of OoR/L. The phase spectrum was a pure

Kolmogorov power-law with m_=l. The results of the simulation are marked with a (.). The best

fit power-law is drawn as a solid line and the theoretical model Eqs. (21) and (22) for/_ = 0.65 is
drawn as a dashed line.

Fig. 4. The normalized intensity error due to longitudinal sampling Az for a plane-wave extended

medium simulation. The phase spectra were pure power-law spectra with a = 1 (top) and 5/3

(middle) and an atmospheric spectrum Eq. (2) with l0 = 5As (bottom). The turbulence levels

(for zero inner scale) are marked m_ = 0.1 (o), 1.0 (1::1), and 10 (_). The normalized rms intensity

m/mb for m_ = 10 is shown as a dashed line.

Fig. 5. Spatial spectra of the intensity (,) and intensity error due to longitudinal sam-

piing Az (open symbols) for a plane-wave extended medium simulation with (N = 512,

As = r//16, Ns = 128). The phase spectrum was a pure Kolmogorov power-law with Born

variance mb2=l. The error spectra were calculated for Ns = 64 screens (o) and 32 screens (1:3).

Fig. 6. Intensity error Irmj due to transverse sampling As for a plane-wave extended medium

simulation with (N = 512, As = rl/16, Ns = 128). The phase spectra were a pure power-law

with a = 1 (top panel); a = 5/3 (middle) and an atmospheric spectrum Eq. (2) with inner scale

lo = 5As (bottom). The turbulence level for these spectra are described by the Born variance with

zero inner scale Eq. (25). These are: m_ = 0.1 (o), 1.0 (1:3), and 10 (<>). The best fit power-law

from the thin screen simulations (Fig. 1) is plotted as a straight line on the upper two panels. The

estimated rms intensity ma,c for m_ = 10 is shown as dashed line.
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Fig. 7. -Spatial spectra of intensity (,) and intensity error due to transverse sampling (open

symbols) for a plane-wave extended medium simulation with (N = 512, As = r1/16 , Ns = 128).

The phase spectrum was a pure Kolmogorov power-law with Born variance m_=l. The intensity

error spectra were calculated for Aa = rl/8 (o) and As = rl/4 (O).

Fig. 8. The normalized variance m 2 for plane-wave and point-source extended medium simula-

tions as a function of OoR/L. The phase spectrum was a pure Kolmogorov power-law with rn_=l.

The best fit power-law models are drawn as solid lines and the theoretical expression are drawn as

dashed lines. For the plane wave case, the theoretical model is given by Eqs. (21) and (30) with

_f = 0.65. For the point source case, the theoretical model is given by Eqs. (21) and (42) with
_f = 0.75.

Fig. 9. The normalized intensity error due to longitudinal sampling Az for a point-source ex-

tended medium simulation. The phase spectra were a pure power-law with a = 1 (top) and 5/3

(middle) and an atmospheric spectrum Eq. (2) with l0 = 5As (bottom). The turbulence levels

(for zero inner scale) are m_ = 0.1 (o), 1.0 (o), and 10 (O). The estimated rms intensity m/rnb

for m_ = 10 is shown as a dashed line.

Fig. 10. Spatial spectra of the intensity (.) and intensity error caused by longitudinal sam-

piing Az (open symbols) for a point-source extended medium simulation with (N = 512,

As = rf/16 ,Ns = 128). The phase spectrum was a pure Kolmogorov power-law with Born

variance m_=l. The error spectra were calculated for Ns = 64 screens (o) and 32 screens (D).

Fig. 11. Intensity error lr,ns due to transverse sampling As for a point-source simulation with

(N = 512, As = rl/16, N s = 128). The spectra were a pure power-law spectrum with a = 1

(top panel); _ = 5/3 (middle) and an atmospheric spectrum Eq. (2) with l0 = 5As (bottom).

The turbulence level for these spectra are described by the Born variance (with zero inner scale

Eq. (37)). These are: m_ = 0.1 (o), 1.0 (O), and 10 (O). The best fit power-law from the thin

screen simulation (Fig. 1) is plotted as a straight line on the upper two panels. The estimated rms

intensity rndec for rn_ = 10 is shown as a dashed line.

Fig. 12. Spatial spectra of intensity (,) and intensity error due to transverse sampling (open

symbols) for a point-source extended medium simulation with (N = 512, As = rl/16 , Ns = 128).

The phase spectrum was a pure Kolmogorov power-law with Born variance m_=l. The intensity

error spectra were calculated for As = rl/8 (o) and As = rl/4 (D).
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Figure 1
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Figure 2

Thin Screen Simulation
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Figure 3
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Figure 4
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,Figure 5

Plane Wave Simulation
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Figure 6

Plane Wave Decimation Error
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Figure 7

Plane Wave Simulation
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Figure 8
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Figure 9

Point Source Simulation
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•Figure 10
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Figure 11

Point Source Decimation Error
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Figure 12
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